杨辉三角的规律以及推导公式是什么? 杨辉三角

2023-05-29 19:56:05 旅游攻略 投稿:修夏

杨辉三角的规律是什么?

杨辉三角的规律是每行数字的之一列和最后一列的数字都是1,从第三行开始,除去之一列和最后一列都为数字1以外,其余每列的数字都等于它上方两个数字之和。

从规律中我们可以看出杨辉三角形是对称的,它是二项式系数在三角形中的一种几何排列。

杨辉三角中n行中的第i个数是i-1中前n-1个数之和,即第n行的数分别为:

(1)中第n行之前的数字之和。

(2)中第n行之前的数字之和。

(3)中第n行之前的数字之和。

(4)中第n行之前的数字之和。

简介:

杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。

杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。

以上内容参考:百度百科-杨辉三角

杨辉三角的规律以及推导公式是什么?

杨辉三角的规律以及推导公式:

1、 每个数等于它上方两数之和。

2、 每行数字左右对称,由1开始逐渐变大。

3、 第n行的数字有n+1项。

4、第n行数字和为2^(n-1)(2的(n-1)次方)。

5、 (a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

6、 第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质。

介绍:

杨辉三角,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个表又叫做帕斯卡三角形,帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。

对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”。

结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和。

杨辉三角的历史

杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。

杨辉,字谦光,南宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。

杨辉三角

杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。

性质:

1、每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

2、第n行的数字个数为n个。

3、第n行数字和为2^(n-1)。

4、每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。

5、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

6、第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。

http://ke..com/view/7804.htm

什么叫“杨辉三角”?具体怎样运用?

杨辉三角

简单的说一下就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

这就是杨辉三角,也叫贾宪三角

他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去

杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

......................................................

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用

杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。

时间上:杨辉(一二六一)朱世杰(一三○三)也明显就可以知道是杨辉发现的

朱世杰只是扩充了其中的内容

同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为

0 (a+b)^0 (0 nCr 0)

1 (a+b)^1 (1 nCr 0) (1 nCr 1)

2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)

3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)

. ... ... ... ... ...

因此 杨辉三角第x层第y项直接就是 (y nCr x)

我们也不难得到 第x层的所有项的总和 为 2^(x-1) (即(a+b)^x中a,b都为1的时候)

[ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数]

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。

在国外,这也叫做"帕斯卡三角形".

S1:这些数排列的形状像等腰三角形,两腰上的数都是1

S2:从右往左斜着看,之一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。

从左往右斜着看,之一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。

S3:上面两个数之和就是下面的一行的数。

S4:这行数是第几行,就是第二个数加一。……

幻方,在我国也称纵横图,它的神奇特点吸引了无数人对它的痴迷。从我国古代的“河出图,洛出书,圣人则之”的传说起,系统研究幻方的之一人,当数我国古代数学家——杨辉。

杨辉,字谦光,钱塘(今杭州)人,我国南宋时期杰出的数学家,与秦九韶、李冶、朱世杰并称宋元四大数学家,他在我国古代数学史和数学教育史上占有十分重要的地位。

杨辉对幻方的研究源于一个小故事。当时杨辉是台州的地方官,一次外出巡游,碰到一孩童挡道,杨辉问明原因方知是一孩童在地I 做一道数学算题,杨辉一听来了兴趣,下轿来到孩童旁问是什么算题。原来,这个孩童在算一位老先生出的一道趣题:把1到9的数字分行排列,不论竖着加、横着加,还是斜着加,结果都等于15。

杨辉看到这个算题, 时想起来他在西汉学者戴德编纂的《大戴礼》一书中也

见过。杨辉想到这儿,和孩童一起算了起来,直到午后,两人终于将算式摆出来了。

后来,杨辉随孩童来到老先生家里,与老先生谈论起数学问题来。老先生说:“北周的甄弯注《数术记遗》一书中写过‘九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”’杨辉听了,这与自己与孩童摆出来的完全一样。便问老先生:“你可知这个九宫图是如何造出来的?”老先生说不知

道。

杨辉回到家中,反复琢磨。一天,他终于发现一条规律,并总结成四句话:“九子斜排,上下对易,左右相更,四维挺出”。就是说:先把l~9九个数依次斜排,再把上l下9两数对调,左7右3两数对调,最后把四面的2、4、6、8向外面挺出,这样三阶幻方就填好了。

杨辉研究出三阶幻方(也叫络书或九宫图)的构造 *** 后,又系统的研究了四阶幻方至十阶幻方。在这几种幻方中,杨辉只给出了三阶、四阶幻方构造 *** 的说明,四阶以上幻方,杨辉只画出图形而未留下作法。但他所画的五阶、六阶乃至十阶幻方全都准确无误,可见他已经掌握了高阶幻方的构成规律。

在信息领域杨辉三角也起着重要作用。

标签: # 杨辉三角
声明:犀牛文库所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系admin@qq.com