共线向量定理,向量共线定理

2023-05-29 19:06:17 旅游攻略 投稿:取一盏清酒

向量共线的公式是什么?

向量m=(a,b),向量n=(c,d),两者共线时 ad=bc

量共线的充要条件:

若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数).

向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使 λa+μb=0

更一般的,平面内若a =(p1,p2) b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1

资料拓展

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。

在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

共线向量定理

共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。

它的七个推论:

推论1

两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。

推论2

两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。

推论3

如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。

推论4

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得

向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。

推论5

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中推论6

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。,λ+μ=1)。

推论7

点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得

λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。

向量三点共线定理

向量三点共线定理是:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也便是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,因此称为共线向量。

证明过程是:AC=OC-OA=λOA+μOB-OA=μOB+(λ-1)OA=μ(OB-OA),而AB=OB-OA,即AB=μAC,故A、B、C三点共线。

平面向量公式是:

1、向量的的数量积。

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π。

定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a?b=x?x'+y?y'。

2、向量的数量积的运算律:

a?b=b?a(交换律)。

(λa)?b=λ(a?b)(关于数乘法的结合律)。

(a+b)?c=a?c+b?c(分配律)。

向量的数量积的性质。

a?a=|a|的平方。

a⊥b 〈=〉a?b=0。

|a?b|≤|a|?|b|。

向量共线定理公式

向量共线定理公式是b=λa,共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。

充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。

必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。

唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。

平面向量的共线定理

平面向量的共线定理如下:

平面向量共线定理:P是直线外AB外一点,C是平面PAB内一点,根据平面向量基本定理,有且仅有一对实数x,y,使得向量PC=x向量PA+y向量PB,以下两个命题互为充要条件:Q1<=>Q2;Q1:A、B、C三点共线;Q2:x+y=1。

一、例题一(见上图)

分解一遍运用该定理的解题过程:

1、找到共线的三点(A、B、D)。

2、确定系数x与y的比例(利用角平分线的性质)。

3、解出系数组合。

但是很多时候并不一定能直接套用定理,还要通过灵活的变形。

二、例题二

1、分析:本题中需要克服的更大问题是如何把三个向量统一到一个三角形中,我们通过平移构造了b的相等向量。

可是如果遇到明显不共线的三点怎么办呢?我们可以从定理的推导本身寻找灵感。下面是对定理的一个局部推导(只考虑A在BC之间的情况)。

我们知道一个向量可以通过平行四边形法则分解到两个方向上,从而得到满足方向要求的一组基底。我们以这组基底为基础,可以通过调整模长构造出确定方向上新基底的线性组合。

2、利用共线定理这种 *** 确定一个向量的线性组合相比平行四边形法则主要有两个好处:

找一条直线相比确定一个平行四边形要容易。这种 *** 确定的系数具有清晰的几何意义。

标签: # 向量 # 定理
声明:犀牛文库所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系admin@qq.com