代数余子式是什么?
代数余子式是从行列式的公式中提取出来的,它的作用是把n阶行列式化简为n – 1阶行列式。在n阶行列式中,把元素a??i所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素a??i的余子式,记作M??,将余子式M??再乘以-1的o+e次幂记为A??,A??叫做元素a??的代数余子式。
什么是代数余子式
在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。
一个元素a??i的代数余子式与该元素本身没什么关系,只与该元素的位置有关。带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。
扩展资料:
计算某一行的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素的代数余子式。
仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行元素。
代数余子式怎么求
第1行的代数余子式之和等于把原行列式的第1行元素都换为1所得的行列式,第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式, 第n行的代数余子式之和等于把原行列式的第n行元素都换为1所得的行列式,所有代数余子式之和就是上面n个新行列式之和。
可以直接经过几次交换行形成对角阵,每次交换乘以一个-1。或者按照之一列展开,代数余子式系数是(-1)^(5+1),因为6的下标是51,同理再将余子式按照某一行或某一列展开。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
代数余子式?
Aij=(-1)∧(i+j)*M ij,Mij为余子式,即除了第i行第j列构成的行列式
满意请采纳
代数余子式性质是什么?
在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。
带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。
相关内容:
设A为一个m×n的矩阵,k为一个介于1和m之间的整数,并且m≤n。A的一个k阶子式是在A中选取k行k列之后所产生的k个交点组成的方块矩阵的行列式。
A的一个k阶余子式是A去掉了m?k行与n?k列之后得到的k×k矩阵的行列式。
由于一共有k种 *** 来选择该保留的行,有k种 *** 来选择该保留的列,因此A的k阶余子式一共有 Ckm*Ckn个。
如果m=n,那么A关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式,简称为A的k阶余子式。
n×n的方块矩阵A关于第i行第j列的余子式Mij是指A中去掉第i行第j列后得到的n1阶子矩阵的行列式。有时可以简称为A的(i,j)余子式。