定义域怎么求,详细举例说明(定义域怎么求)

2023-06-03 12:20:37 旅游攻略 投稿:这条河叫时光

函数定义域的求法

求函数定义域的 *** :函数f(x+1)的定义域为(0,1),指的是x取值在0,1之间,那么x+1取值为1,2之间。设y=x+1,则f(x+1)=f(y),在f(y)这个函数中,自变量是y,其取值范围是1,2,所以f(y)的定义域是(1,2)。

求函数的定义域需要从这几个方面入手:

1、分母不为零。

2、偶次根式的被开方数非负。

3、对数中的真数部分大于0。

4、指数、对数的底数大于0,且不等于1。

5、y=tanx中x≠kπ+π/2。

6、y=cotx中x≠kπ。

六种常见函数的定义域如下

1、正切函数tanf(x)型,解f(x)≠kπ+π/2,k为整数。

2、分母不为0。

3、对数函数的真数大于0。

4、三角函数中的正切和余切的范围(如tanx不能取x=90度等)。

5、三角函数正切函数中;余切函数中。

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

定义域怎么求,详细举例说明

求函数的定义域需要从这几个方面入手:

(1)分母不为零。

(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1。

(5)y=tanx中x≠kπ+π/2。

不同函数的定义域求法不同,举例:y=√(x+1)的定义域。

因为√(x+1)是偶次根式,所以(x+1)≥0,即x≥-1。

扩展资料:

求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量x的取值范围。

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或淡化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏。

事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。

定义域怎么求

定义域是函数y=f(x)中的自变量x的范围。

求函数的定义域需要从这几个方面入手:

(1),分母不为零

(2),偶次根式的被开方数非负。

(3),对数中的真数部分大于0。

(4),指数、对数的底数大于0,且不等于1

(5),y=tanx中x≠kπ+π/2,

y=cotx中x≠kπ等等。值域是函数y=f(x)中y的取值范围。

常用的求值域的 *** :(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配 *** ,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法,(11)分离常数法等。

扩展资料:

1、化归法:

在解决问题的过程中,数学往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。

把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的 *** ,我们称之为化归法。

2、复合函数法:

多元函数微分学是数学分析领域的重要内容。在多元函数微分学中,主要讨论的是多元函数的可微性及其应用,而二元函数的可微性则是多元函数可微性研究的重点。复合函数微分法则是二元函数可微性的进一步研究。

3、三角代换法:

三角代换是利用三角函数的性质将代数或几何问题转化成三角问题,使题目得以突破的解题 *** 。实质是换元思想,体现了“三角”是数学中的工具的特征,恰当地利用三角代换有助于培养学生联想和类比的能力。

4、换元法:

换元法又称变量替换法 , 是我们解题常用的 *** 之一 。利用换元法 , 可以化繁为简 , 化难为易 , 从而找到解题的捷径 。

解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。

5、分离常数法

把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。

定义域怎么求,详细举例说明

求函数的定义域需要从这几个方面入手:

(1)分母不为零。

(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1。

(5)y=tanx中x≠kπ+π/2。

不同函数的定义域求法不同,举例:y=√(x+1)的定义域。

因为√(x+1)是偶次根式,所以(x+1)≥0,即x≥-1。

扩展资料:

求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。

为了便于理解定义域的要求。出题的时候,往往用函数g(x)来代替x的位置,

比如:g(x)=sinx,

定义域为一切实数,

但是放在了分母,就随分母的定义域走,1/sinx,

sinx≠0,求x的取值范围(定义域)。

放在了根号里,就随着根号的定义域走,√sinx,

sinx≥0。再复杂一些的,如:1/√sinx,g(x)既在根号里,又做分母,就用两个函数的定义域来约束,sinx≥0和sinx≠0,满足这两个条件的公共区域就是sinx>0。

更复杂的是把不同的函数经过加、减、乘、除、开方、指数、对数、三角函数等运算放在一起,要你求定义域。遇到这种情况,就把函数分为几个部分,化整为零,一段一段地列出函数的定义域,再来求解。

解题后,千万要注意,把所求的结果,在数轴上画一下,几段定义域所求的值,一定在这些定义域相互包含的区域里,不能相互包含的x值要舍去。这样,才算完成了定义域的求解。

定义域怎么求?

求函数定义域的 *** 是设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

设A,B是两个非空数集,从 *** A到 *** B的一个映射,叫做从 *** A到 *** B的一个函数。记作y=f(x),x∈A,或y=g(t),t∈A,其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。

其主要根据为:

1、分式的分母不能为零。

2、偶次方根的被开方数不小于零。

3、对数函数的真数必须大于零。

4、指数函数和对数函数的底数必须大于零且不等于1。

求函数值域的 ***

1、图像法

根据函数图象,观察更高点和更低点的纵坐标。

2、配 ***

利用二次函数的配 *** 求值域,需注意自变量的取值范围。

3、单调性法

利用二次函数的顶点式或对称轴,再根据单调性来求值域。

4、反函数法

若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。

5、换元法

包含代数换元、三角换元两种 *** ,换元后要特别注意新变量的范围。

6、判别式法

判别式法即利用二次函数的判别式求值域。

7、复合函数法

设复合函数为f[g(x),]g(x)为内层函数,为了求出f的值域,先求出g(x)的值域,然后把g(x)看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据f(x)函数的性质求出其值域。

8、不等式法

基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

9、化归法

用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

10、分离常数法

把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。

定义域怎么求?

求定义域的 *** :根据解析式求偶次根式的被开方大于零,分母不能为零;据实际问题的要求确定自变量的范围;据相关解析式的定义域来确定所求函数自变量的范围等。

定义域函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量x的取值范围。

扩展资料:

函数值域

值域定义

函数中,因变量的取值范围叫做函数的值域,在数学中是函数在定义域中应变量所有值的 ***

常用的求值域的 ***

(1)化归法;

(2)图象法(数形结合)

(3)函数单调性法,

(4)配 *** ;

(5)换元法;

(6)反函数法(逆求法);

(7)判别式法;

(8)复合函数法。

标签: # 定义域
声明:犀牛文库所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系admin@qq.com