曲率半径公式是什么?
曲率半径公式是:γ(t)=(t,f(t))。
在空间曲线的情况下,曲率半径是曲率向量的长度。在平面曲线的情况下,则R要取绝对值。其中s是曲线上固定点的弧长,α是切向角,K是曲率。如果曲线以笛卡尔坐标表示为y(x)。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。所以说,曲率半径越大曲率越小,反之亦然。
性质:
曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度,特殊的如:圆上各个地方的弯曲程度都是一样的故曲率半径就是该圆的半径;直线不弯曲 ,和直线在该点相切的圆的半径可以任意大,所以曲率是0。
如果对于某条曲线上的某个点可以找到一个与其曲率相等的圆形,那么曲线上这个点的曲率半径就是该圆形的半径(注意,是这个点的曲率半径,其他点有其他的曲率半径)。也可以这样理解:就是把那一段曲线尽可能地微分,直到最后近似为一个圆弧,此圆弧所对应的半径即为曲线上该点的曲率半径。
曲率半径公式是什么?是什么?
曲率半径公式:ρ=v2/α法向。
曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
公式及推导:
ρ=|[(1+y'^2)^(3/2)]/y"|,证明如下:
曲线上某点的曲率半径是该点的密切圆(Osculating circle)的半径。密切圆可能是与曲线在该点相内切的圆中半径更大的(比如在椭圆长轴顶点处),也可能是与曲线在该点相外切的圆中半径最小的(比如在椭圆短轴顶点处),也可能两者都不是。
比如对于直线上任一点,和直线在该点相切的圆的半径可以任意大,所以直线的曲率半径为无穷大(对应于曲率为零,也就是“不弯曲”)。
而在圆上,每一点的密切圆就是其本身,故其曲率半径为其本身的半径。
抛物线顶点曲率半径为焦准距(顶点到焦点距离的两倍)。
对于y=f(x),曲率半径等于(1+(f ')^2)^(3/2)/ |f "| 。
高数曲率半径公式是什么?
曲率半径ρ=1/k
曲率k=|y``/(1+y`2)^(3/2)|
y=f(x)表示函数方程,y``为二阶导,y`为一阶导
曲率的计算公式是什么呢?
曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。
1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2).
2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。
3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1).
扩展资料曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。