雅可比行列式准确详细的定义及其具体应用.(雅可比行列式)

2023-05-28 20:08:04 旅游攻略 投稿:九月朦胧

雅可比行列式是什么?

雅可比行列式通常称为雅可比式(Jacobian),它是以n个n元函数的偏导数为元素的行列式 。

坐标系变换后单位微分元的比率或倍数。因为非线性方程组被线性化(偏微分)后,可以使用矩阵工具了,雅克比矩阵就是这个线性化后的矩阵。

任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:

(1) 对于任意向量X,‖X‖≥0,且‖X‖=0óX=0;

(2) 对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖;

(3) 对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖。

在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。

它们全部都以数学家卡尔·雅可比命名;英文雅可比行列式"Jacobian"可以发音为[ja ?ko bi ?n]或者[?? ?ko bi ?n]。

雅可比行列式准确详细的定义及其具体应用.

雅可比行列式是多重积分变换中形成行列式.其具体应用举例如下:

对函数exp(-x^2-y^2)在R^2求积分,可以用变换

x=r*cos(a)

y=r*sin(a)

则,上述变换的雅可比行列式如图所示

雅可比行列式的意义是什么?

坐标系变换后单位微分元的比率或倍数。因为非线性方程组被线性化(偏微分)后,可以使用矩阵工具了,雅克比矩阵就是这个线性化后的矩阵。

任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:

(1) 对于任意向量X,‖X‖≥0,且‖X‖=0óX=0;

(2) 对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖;

(3) 对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖;

雅可比行列式

如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负。如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。

如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负(其正负号标志着u-坐标系的旋转定向是否与x-坐标系的一致)。

以上内容参考;百度百科-雅可比行列式

雅可比行列式怎么算

分子分母都是一个二阶行列式,二阶行列式的计算是

|a

b|

|c

d|

=ad-bc。

拓展资料:

雅可比人物介绍:

卡尔·雅可比(Carl

Gustav

Jacob

Jacobi,1804~1851),德国数学家。

1804年12月10日生于普鲁士的波茨坦;1851年2月18日卒于柏林。雅可比是数学史上最勤奋的学者之一,与欧拉一样也是一位在数学上多产的数学家,是被广泛承认的历史上最伟大的数学家之一。

雅可比善于处理各种繁复的代数问题,在纯粹数学和应用数学上都有非凡的贡献,他所理解的数学有一种强烈的柏拉图式的格调,其数学成就对后人影响颇为深远。

在他逝世后,狄利克雷称他为拉格朗日以来德国科学院成员中最卓越的数学家。

什么叫雅可比行列式

雅可比行列式通常称为雅可比式(Jacobian) 它是以n个n元函数的偏导数为元素的行列式 。

具体看百科~

考研数三高数多元函数隐函数求导,雅可比行列式考不考?

不考。都是通过对方程组两边同时对x或y求偏导,得到未知变量是偏导的方程组。再解方程组而得到的。雅克比行列式就是这个方程组的系数行列式。而用雅克比求偏导的 *** 实质就是线性代数中的克莱姆法则。

F(x,y,u,v)=0G(x,y,u,v)=0u,v都是x,y的函数两边同时对x求导,Fx+Fu·au/ax+Fv·av/ax=0Gx+Gu·au/ax+Gv·av/ax=0。这儿相当于au/ax,av/ax是未知数。

标签: # 行列式
声明:犀牛文库所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系admin@qq.com