0的阶乘是多少
0的阶乘的结果是1,用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。给“0!”下定义只是为了相关公式的表述及运算更方便。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
扩展资料0的阶乘等于多少?为什么?
等于1, 说的简单一点是认为规定的,但它是有道理的,为什么不规定0!=0呢?因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定
我们知道1!=1,根据1!=1*0!,所以0!=1而不是0
0的阶乘是多少?
0的阶乘就是1,这是人为的规定。
但是这个人为规定不是随意规定的。是根据正整数的阶乘运算关系扩展而来的。
因为本来n(n是正整数)的阶乘就是从1×2×……×n这n个数相乘。但是这个定义对0就无效了。那么人们只能根据不同数的阶乘关系来扩展定义。从正整数的阶乘能看出来,(n+1)!÷n!=n+1,所以n!=(n+1)!÷(n+1)。那么把这个式子扩展到0上,就得到0!=1!÷1=1÷1=1。就是这样扩展定义的。
零的阶乘是几?
0的阶乘就是1。一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
0是介于-1和1之间的整数,是最小的自然数,也是有理数。0不是正数,负数,质数,合数,0是自然数,0是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0,0不能为除数,0除以任何非零实数等于0。
0的阶乘为什么等于1
1的阶乘是1,这个好理解吧。
(n+1)的阶乘是n的阶乘乘以(n+1),也就是说(n-1)的阶乘是n的阶乘除以n,那么取n=1,就得到0的阶乘等于1。
数学上的一些东西只是工具,你定义他是啥就是啥,你也可以说0!=0,也不影响各种数学推理,大不了注明下0!=0,的特殊情况。
就好像pi取为周长比直径=3.14,不取为周长比半径=6.28,不就是当时为了方便嘛,你也可以换成6.28,各个公式也都成立,不过是除个2而已。
我还是高中的时候特别纠结这种东西,上了大学后接触到就明白了,包括很多学科现在都还有层出不穷的成果:代码、算法,等等等等,实际上更先定义(或发现)的人也就是出于自己的习惯或者使用方便,能解决实际问题就行,像这种根本不本质的问题就没意义纠结了。
这个定义跟pi与2pi之争还不是一回事,它的定义是有道理的。
我们可以这样说。lz想一下,如果要写一段算n!的程序,应该怎么写。是不是这样:
f = 1
for i = 1 to n {f = f * i}
好,那么如果n = 0,运行的结果是什么呢?是1吧!所以就定义0! = 1了。
简单地说,规定0! = 1的理由是“乘法的出发点是1”。同样,加法的出发点是0。比如我要定义一种“阶加”运算,n$ = 1 + 2 + ... + n,那么0$应该等于0,也是比较容易理解的。
再如,我们可以对一个有限数集A定义其所有元素的和A$及其所有元素的积A!。如果A是空集怎么办呢?有了上面的讨论,就会发现A$ = 0和A! = 1是最合理的定义。
一般的书不想在这个细节上多费口舌,所以就说“规定”了,但这个“规定”是有道理的。
0的阶乘是多少
您好,数学上0的阶乘是1。0!=1
希望能够帮助到您,谢谢!
0的阶乘等于几
0的阶乘是1,这是定义,记住就好,当然,以后学习会用到一些 *** 来告诉你为什么是1