互斥事件和对立事件的区别是什么?
一、性质不同
1、互斥事件:事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥。
2、相互独立是设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
二、角度不同
1、互斥事件针对能不能同时发生,即两个互斥事件是指两者不可能同时发生。
2、相互独立的事件针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响。
联系
假设掷硬币,每一次投得head和投得tail两事件是互相排斥的,不能同时投得head和tail。但之一次投得head这事件和第二次投得tail这事件则是相互独立的,因为第二次投什么,跟之一次投什么没啥关系。在之一个例子中,这两事件互斥,但不是相互独立;而第二个例子中,这两事件相互独立。
逻辑关系
1、对立事件是互斥事件的特例,所以对立事件一定是互斥事件;
2、互斥事件不一定是对立事件,当且仅当两个互斥事件必有一个发生时,它们同时又是对立事件;
3、互斥事件和对立事件均不能同时发生。
若A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
两者的联系在于,对立事件属于一种特殊的互斥事件。它们的区别可以通过定义看出来。一个事件本身与其对立事件的并集等于总的样本空间;而若两个事件互为互斥事件,表明一者发生则另一者必然不发生,但不强调它们的并集是整个样本空间。即对立必然互斥,互斥不一定会对立。
什么是互斥事件,什么是对立事件?
区别:
①“对立事件”与“互斥事件”具有包含关系,“互斥事件”中的事件个数可以是两个或多个,而“对立事件”只是针对两个事件而言的,两个事件对立是这两个事件互斥的充分条件,但不是必要条件。
②对立事件是一种特殊的互斥事件。特殊有两点:其一,事件个数特殊(只能是两个事件);其二,发生情况特殊(有且只有一个发生)。若A与B是对立事件,则A与B互斥且A+B为必然事件,故A+B发生的概率为1,即P(A+B)=P(A)+P(B)=1。
③对立必然互斥,互斥不一定会对立。
拓展资料:
互斥事件,指的是不可能同时发生的两个事件。例如:事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
公式应用:
P(A+B)=P(A)+P(B)
a是A的对立事件,
P(A)=1-P(a)
P(A)+P(B)不一定等于1
例如:粉笔盒里有3支红粉笔,2支绿粉笔,1支黄粉笔,现从中任取1支,记事件A为取得红粉笔,记事件B为取得绿粉笔,则A与B不能同时发生,即A与B是互斥事件。
对立事件,亦称"逆事件",不可能同时发生,其中必有一个发生的两个互斥事件。
公式应用:
P(A)+P(B)=1
例如,在掷骰子试验中,A={出现的点数为偶数},b={出现的点数为奇数},A∩B为不可能事件,A∪B为必然事件,所以A与B互为对立事件。
互斥和对立事件的区别
互斥和对立事件的区别有:
1、互斥事件:事件A与事件B不可能同时发生,强调的是“不同时发生”。
2、对立事件:事件A、B中必定而且只有一个发生。除了A就是B,没有第三种可能。
3、对立事件必然是互斥事件,互斥事件不一定是对立事件。 扩展资料
什么是互斥事件:
事件A和B的.交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
什么是对立事件:
其中必有一个发生的两个互斥事件叫做对立事件。