语音理解(speech understanding) 利用知识表达和组织等人工智能技术进行语句自动识别和语意理解。同语音识别的主要不同点是对语法和语义知识的充分利用程度。
语音理解(speech understanding) 利用知识表达和组织等人工智能技术进行语句自动识别和语意理解。同语音识别的主要不同点是对语法和语义知识的充分利用程度。
定义
语音理解起源于美国,1971 年,美国远景研究计划局(ARPA)资助了一个庞大的研究项目,该项目要达到的目标叫做语音理解系统。由于人对语音有广泛的知识,可以对要说的话有一定的预见性,所以人对语音具有感知和分析能力。依靠人对语言和谈论的内容所具有的广泛知识,利用知识提高计算机理解语言的能力,就是语音理解研究的核心。
利用理解能力,可以使系统提高性能:①能排除噪声和嘈杂声;②能理解上下文的意思并能用它来纠正错误,澄清不确定的语义;③能够处理不合语法或不完整的语句。因此,研究语音理解的目的,可以说是与其研究系统仔细地去识别每一个单词,倒不如去研究系统能抓住说话的要旨更为有效。
一个语音理解系统除了包括原语音识别所要求的 部分之外,还须添入知识处理部分。知识处理包括知识的自动收集、知识库的形成,知识的推理与检验等。当然还希望能有自动地作知识修正的能力。因此语音理解可以认为是信号处理与知识处理结合的产物。语音知识包括音位知识、音变知识、韵律知识、词法知识、句法知识,语义知识以及语用知识。这些知识涉及实验语音学、汉语语法、自然语言理解、以及知识搜索等许多交叉学科。
初步研制成功的语音理解系统称为 HEARSAY 系统。它是利用一种公用“黑板”作为知识库,环绕此黑板的是一系列专家系统,分别提取及搜索有关音位、音变……等各种知识。以后能进一步达到预计目标的系统是 HARPY 系统,该系统用语言的有限状态模型,通过唯一的一个统一的网络把彼此分离的各种知识源集中起来,这个统一的网络,称为知识编译器。不同理解系统在利用知识的策略或组织方面各有不同的特点。
完善的语音理解系统是人们梦寐以求的研究理想,但这并非短期内能够完全解决的研究课题。然而面向确定任务的语音理解系统,例如只涉及有限的词汇量,有一般比较通用的说话句型的语音理解系统,以及可供一定范围的工作人员使用的语音理解系统,是可以实现的。因此,它对某些自动化应用领域已有实用价值,例如飞机票预售系统、银行业务、旅馆业务的登记及询问系统等。