传感器是什么

2023-07-31 04:54:00 生活常识 投稿:网友

传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器是什么

传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。

定义

国家标准 GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

中国物联网校企联盟认为,传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。”

“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。

主要作用

人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 fm 的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s 的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

主要特点

传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为 21 世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

传感器的组成

传感器一般由敏感元件、转换元件、变换电路和辅助电源四部分组成。

敏感元件直接感受被测量,并输出与被测量有确定关系的物理量信号;转换元件将敏感元件输出的物理量信号转换为电信号;变换电路负责对转换元件输出的电信号进行放大调制;转换元件和变换电路一般还需要辅助电源供电。

主要功能

常将传感器的功能与人类 5 大感觉器官相比拟:

光敏传感器——视觉

声敏传感器——听觉

气敏传感器——嗅觉

化学传感器——味觉

压敏、温敏、流体传感器——触觉

敏感元件的分类:

物理类,基于力、热、光、电、磁和声等物理效应。

化学类,基于化学反应的原理。

生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分 46 类)。

常见种类

电阻式

电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

变频功率

变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样
值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。

称重

称重传感器是一种能够将重力转变为电信号的力→电转换装置,是电子衡器的一个关键部件。

能够实现力→电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。因此电阻应变式称重传感器在衡器中得到了广泛地运用。

主要分类

按用途

压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。

按原理

振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。

按输出信号

模拟传感器:将被测量的非电学量转换成模拟电信号。

数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。

膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

主要特性

传感器静态

传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。

线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的最大偏差值与满量程输出值之比。

灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用 S 表示灵敏度。

迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。

重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。

分辨力:当传感器的输入从非零值缓慢增加时,在超过某一增量后输出发生可观测的变化,这个输入增量称传感器的分辨力,即最小输入增量。

阈值:当传感器的输入从零值开始缓慢增加时,在达到某一值后输出发生可观测的变化,这个输入值称传感器的阈值电压。

传感器动态

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

线性度

通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

选型原则

要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。

在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。

常用术语

传感器

能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。

敏感元件是指传感器中能直接(或响应)被测量的部分。

转换元件指传感器中能较敏感元件感受(或响应)的被测量转换成是与传输和(或)测量的电信号部分。

当输出为规定的标准信号时,则称为变送器。

测量范围

在允许误差限内被测量值的范围。

量程

测量范围上限值和下限值的代数差。

精确度

被测量的测量结果与真值间的一致程度。

重复性

在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度:

相同测量方法

相同观测者

相同测量仪器

相同地点

相同使用条件

在短时期内的重复。

分辨力

传感器在规定测量范围内可能检测出的被测量的最小变化量。

阈值

能使传感器输出端产生可测变化量的被测量的最小变化量。

零位

使输出的绝对值为最小的状态,例如平衡状态。

激励

为使传感器正常工作而施加的外部能量(电压或电流)。

最大激励

在市内条件下,能够施加到传感器上的激励电压或电流的最大值。

输入阻抗

在输出端短路时,传感器输入端测得的阻抗。

输出

有传感器产生的与外加被测量成函数关系的电量。

输出阻抗

在输入端短路时,传感器输出端测得的阻抗。

零点输出

在室内条件下,所加被测量为零时传感器的输出。

滞后

在规定的范围内,当被测量值增加和减少时,输出中出现的最大差值。

迟后

输出信号变化相对于输入信号变化的时间延迟。

漂移

在一定的时间间隔内,传感器输出中有与被测量无关的不需要的变化量。

零点漂移

在规定的时间间隔及室内条件下零点输出时的变化。

灵敏度

传感器输出量的增量与相应的输入量增量之比。

灵敏度漂移

由于灵敏度的变化而引起的校准曲线斜率的变化。

热灵敏度漂移

由于灵敏度的变化而引起的灵敏度漂移。

热零点漂移

由于周围温度变化而引起的零点漂移。

线性度

校准曲线与某一规定直线一致的程度。

非线性度

校准曲线与某一规定直线偏离的程度。

长期稳定性

传感器在规定的时间内仍能保持不超过允许误差的能力。

固有频率

在无阻力时,传感器的自由(不加外力)振荡频率。

响应

输出时被测量变化的特性。

补偿温度范围

使传感器保持量程和规定极限内的零平衡所补偿的温度范围。

蠕变

当被测量机器多有环境条件保持恒定时,在规定时间内输出量的变化。

绝缘电阻

如无其他规定,指在室温条件下施加规定的直流电压时,从传感器规定绝缘部分之间测得的电阻值。

环境影响

环境给传感器造成的影响主要有以下几个方面:

高温环境对传感器造成涂覆材料熔化、焊点开化、弹性体内应力发生结构变化等问题。对于高温环境下工作的传感器常采用耐高温传感器;另外,必须加有隔热、水冷或气冷等装置。

粉尘、潮湿对传感器造成短路的影响。在此环境条件下应选用密闭性很高的传感器。不同的传感器其密封的方式是不同的,其密闭性存在着很大差异。

常见的密封有密封胶充填或涂覆;橡胶垫机械紧固密封;焊接(氩弧焊、等离子束焊)和抽真空充氮密封。

从密封效果来看,焊接密封为最佳,充填涂覆密封胶为最差。对于室内干净、干燥环境下工作的传感器,可选择涂胶密封的传感器,而对于一些在潮湿、粉尘性较高的环境下工作的传感器,应选择膜片热套密封或膜片焊接密封、抽真空充氮的传感器。

在腐蚀性较高的环境下,如潮湿、酸性对传感器造成弹性体受损或产生短路等影响,应选择外表面进行过喷塑或不锈钢外罩,抗腐蚀性能好且密闭性好的传感器。

电磁场对传感器输出紊乱信号的影响。在此情况下,应对传感器的屏蔽性进行严格检查,看其是否具有良好的抗电磁能力。

易燃、易爆不仅对传感器造成彻底性的损害,而且还给其它设备和人身安全造成很大的威胁。因此,在易燃、易爆环境下工作的传感器对防爆性能提出了更高的要求:在易燃、易爆环境下必须选用防爆传感器,这种传感器的密封外罩不仅要考虑其密闭性,还要考虑到防爆强度,以及电缆线引出头的防水、防潮、防爆性等。

选择使用

对传感器数量和量程的选择:

传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据使秤体几何重心和实际重心重合的原则而确定)而定。一般来说,秤体有几个支撑点就选用几只传感器,但是对于一些特殊的秤体如电子吊钩秤就只能采用一个传感器,一些机电结合秤就应根据实际情况来确定选用传感器的个数。

传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载等因素综合评价来确定。一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。

传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。

公式如下:

C=K-0K-1K-2K-3(Wmax+W)/N

C—单个传感器的额定量程

W—秤体自重

Wmax—被称物体净重的最大值

N—秤体所采用支撑点的数量

K-0—保险系数,一般取值在 1.2~1.3 之间

K-1—冲击系数

K-2—秤体的重心偏移系数

K-3—风压系数

根据经验,一般应使传感器工作在其 30%~70%量程内,但对于一些在使用过程中存在较大冲击力的衡器,如动态轨道衡、动态汽车衡、钢材秤等,在选用传感器时,一般要扩大其量程,使传感器工作在其量程的 20%~30%之内,使传感器的称量储备量增大,以保证传感器的使用安全和寿命。

要考虑各种类型传感器的适用范围:

传感器的准确度等级包括传感器的非线形、蠕变、蠕变恢复、滞后、重复性、灵敏度等技术指标。在选用传感器的时候,不要单纯追求高等级的传感器,而既要考虑满足电子秤的准确度要求,又要考虑其成本。

对传感器等级的选择必须满足下列两个条件:

满足仪表输入的要求。称重显示仪表是对传感器的输出信号经过放大、A/D 转换等处理之后显示称量结果的。因此,传感器的输出信号必须大于或等于仪表要求的输入信号大小,即将传感器的输出灵敏度代人传感器和仪表的匹配公式,计算结果须大于或等于仪表要求的输入灵敏度。

满足整台电子秤准确度的要求。一台电子秤主要是由秤体、传感器、仪表三部分组成,在对传感器准确度选择的时候,应使传感器的准确度略高于理论计算值,因为理论往往受到客观条件的限制,如秤体的强度差一点,仪表的性能不是很好、秤的工作环境比较恶劣等因素都直接影响到秤的准确度要求,因此要从各方面提高要求,又要考虑经济效益,确保达到目的。

国家标准

与传感器相关的现行国家标准

GB/T 14479-1993 传感器图用图形符号

GB/T 15478-1995 压力传感器性能试验方法

GB/T 15768-1995 电容式湿敏元件与湿度传感器总规范

GB/T 15865-1995 摄像机(PAL/SECAM/NTSC)测量方法第 1 部分:非广播单传感器摄像机

GB/T 13823.17-1996 振动与冲击传感器的校准方法声灵敏度测试

GB/T 18459-2001 传感器主要静态性能指标计算方法

GB/T 18806-2002 电阻应变式压力传感器总规范

GB/T 18858.2-2002 低压开关设备和控制设备控制器-设备接口(CDI) 第 2 部分:执行器传感器接口(AS-i)

GB/T 18901.1-2002 光纤传感器第 1 部分:总规范

GB/T 19801-2005 无损检测声发射检测声发射传感器的二级校准

GB/T 7665-2005 传感器通用术语

GB/T 7666-2005 传感器命名法及代号

GB/T 11349.1-2006 振动与冲击机械导纳的试验确定第 1 部分:基本定义与传感器

GB/T 20521-2006 半导体器件第 14-1 部分: 半导体传感器-总则和分类

GB/T 14048.15-2006 低压开关设备和控制设备第 5-6 部分:控制电路电器和开关元件-接近传感器和开关放大器的 DC 接口(NAMUR)

GB/T 20522-2006 半导体器件第 14-3 部分: 半导体传感器-压力传感器

GB/T 20485.11-2006 振动与冲击传感器校准方法第 11 部分:激光干涉法振动绝对校准

GB/T 20339-2006 农业拖拉机和机械固定在拖拉机上的传感器联接装置技术规范

GB/T 20485.21-2007 振动与冲击传感器校准方法第 21 部分:振动比较法校准

GB/T 20485.13-2007 振动与冲击传感器校准方法第 13 部分: 激光干涉法冲击绝对校准

GB/T 13606-2007 土工试验仪器岩土工程仪器振弦式传感器通用技术条件

GB/T 21529-2008 塑料薄膜和薄片水蒸气透过率的测定电解传感器法

GB/T 20485.1-2008 振动与冲击传感器校准方法第 1 部分: 基本概念

GB/T 20485.12-2008 振动与冲击传感器校准方法第 12 部分:互易法振动绝对校准

GB/T 20485.22-2008 振动与冲击传感器校准方法第 22 部分:冲击比较法校准

GB/T 7551-2008 称重传感器

GB 4793.2-2008 测量、控制和实验室用电气设备的安全要求第 2 部分:电工测量和试验用手持和手操电流传感器的特殊要求

GB/T 13823.20-2008 振动与冲击传感器校准方法加速度计谐振测试通用方法

GB/T 13823.19-2008 振动与冲击传感器的校准方法地球重力法校准

GB/T 25110.1-2010 工业自动化系统与集成工业应用中的分布式安装第 1 部分:传感器和执行器

GB/T 20485.15-2010 振动与冲击传感器校准方法第 15 部分:激光干涉法角振动绝对校准

GB/T 26807-2011 硅压阻式动态压力传感器

GB/T 20485.31-2011 振动与冲击传感器的校准方法第 31 部分:横向振动灵敏度测试

GB/T 13823.4-1992 振动与冲击传感器的校准方法磁灵敏度测试

GB/T 13823.5-1992 振动与冲击传感器的校准方法安装力矩灵敏度测试

GB/T 13823.6-1992 振动与冲击传感器的校准方法基座应变灵敏度测试

GB/T 13823.8-1994 振动与冲击传感器的校准方法横向振动灵敏度测试

GB/T 13823.9-1994 振动与冲击传感器的校准方法横向冲击灵敏度测试

GB/T 13823.12-1995 振动与冲击传感器的校准方法安装在钢块上的无阻尼加速度计共振频率测试

GB/T 13823.14-1995 振动与冲击传感器的校准方法离心机法一次校准

GB/T 13823.15-1995 振动与冲击传感器的校准方法瞬变温度灵敏度测试法

GB/T 13823.16-1995 振动与冲击传感器的校准方法温度响应比较测试法

GB/T 13866-1992 振动与冲击测量描述惯性式传感器特性的规定

技术特点

中国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。传感器技术历经了多年的发展,其技术的发展大体可分三代:

第一代是结构型传感器,它利用结构参量变化来感受和转化信号。

第二代是上 70 年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器。

第三代传感器是以后刚刚发展起来的智能型传感器,是微型计算机技术与检测技术相结合的产物,使传感器具有一定的人工智能。

传感器技术及产业特点

传感器技术及其产业的特点可以归纳为:基础、应用两头依附;技术、投资两个密集;产品、产业两大分散。

基础、应用两头依附

基础依附,是指传感器技术的发展依附于敏感机理、敏感材料、工艺设备和计测技术这四块基石。敏感机理千差万别,敏感材料多种多样,工艺设备各不相同,计测技术大相径庭,没有上述四块基石的支撑,传感器技术难以为继。

应用依附是指传感器技术基本上属于应用技术,其市场开发多依赖于检测装置和自动控制系统的应用,才能真正体现出它的高附加效益并形成现实市场。也即发展传感器技术要以市场为导向,实行需求牵引。

技术、投资两个密集

技术密集是指传感器在研制和制造过程中技术的多样性、边缘性、综合性和技艺性。它是多种高技术的集合产物。由于技术密集也自然要求人才密集。

投资密集是指研究开发和生产某一种传感器产品要求一定的投资强度,尤其是在工程化研究以及建立规模经济生产线时,更要求较大的投资。

产品、产业两大分散

产品结构和产业结构的两大分散是指传感器产品门类品种繁多(共 10 大类、42 小类近 6000 个品种),其应用渗透到各个产业部门,它的发展既有各产业发展的推动力,又强烈地依赖于各产业的支撑作用。只有按照市场需求,不断调整产业结构和产品结构,才能实现传感器产业的全面、协调、持续发展。

标签: # 传感器
声明:犀牛文库所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系admin@qq.com